Development of a miniature calorimeter for identification and detection of explosives and other energetic compounds.
نویسندگان
چکیده
The development of versatile systems capable of providing rapid, portable, and inexpensive detection of explosives and energetic compounds are critically needed to offer enhanced levels of protection against current and future threats to homeland security, as well as satisfying a wide range of applications in the fields of forensic analysis, emergency response, and industrial hazards analysis. Calorimetric techniques have been largely overlooked in efforts to develop advanced chemical analysis technology, largely because of limitations associated with the physical size of the instruments and the relatively long timescales (>30 min) required to obtain a result. This miniaturized calorimeter circumvents these limitations, thereby creating a first-of-its-kind system allowing thermal analysis to be performed in a portable format that can be configured for use in a variety of field operations with a significantly reduced response time (approximately 2 min). Unlike current explosives detectors, this system is based on calorimetric techniques that are inherently capable of providing direct measurements of energy release potential and therefore do not depend on prior knowledge of familiar compounds.
منابع مشابه
کاربرد نقاط کوانتومی به عنوان حسگرهای ترکیبات نیترو آروماتیک
Identifying minor amounts of explosives with sensitivity, selectivity, accuracy and speed can be a great advantage for applications related to national security and environmental monitoring.Unfortunately, identification with high reliability of explosives is still a challenge and is largely unfulfilled. Today, fluorescence-based methods are widely used to detect explosives and products derived ...
متن کاملMiniaturized calorimeter for thermal screening of energetic materials
The use of chip-scale calorimeters for research and development has increased during the last two decades. The high sensitivity of these devices allows their use for characterization of very small amounts of sample. However, the potential for using them for screening of highly energetic materials (i.e., explosives) has not been fully explored. In this paper, we present the design aspects of two...
متن کاملمطالعه ساختار RDX، HMX و مشتقات آنها به کمک نظریه تابعی چگال و محاسبه برخی خواص آنها
The hexogen, RDX and cyclotetramethylene-tetranitramine (HMX) are of the strongest explosives known to be classified as secondary explosives. These compounds, and some similar compounds, have N-N and N-O covalent bonds, which appear to be an important factor in their explosive and energetic properties. In this paper, the optimal structures and energies of the RDX and HMX and also the energy and...
متن کاملمروری برساختار وخواص مواد منفجره مقاوم حرارتی (علمی-ترویجی)
Energetic materials specifically explosives material used extensively both for civil and military applications. Therefore probability explosion energetic material is unavoidable .The need to development of energetic materials with high performance and greater stability to heat, thermally stable explosives, is given priority in research development energetic materials, which are safer, more reli...
متن کاملمعرفی نمکهای پرانرژی از دسته تترازول N- اکسید به عنوان مواد منفجره سبز
Promote chemical technologies is an innovation that reduce or eliminate use or production of hazardous materials in the design, manufacture and use of chemical products. According to this law, reduce pollution at source is fundamentally different and more desirable than waste management and pollution control. Nowadays, this new approach known as green chemistry, which is: The design of chemical...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of hazardous materials
دوره 142 3 شماره
صفحات -
تاریخ انتشار 2007